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Abstract—Thin shells of ice, constructed by spraying water onto an inflated membrane, could provide
inexpensive winter shelters in the arctic. The major design consideration must be the creep behaviour of
ice. In the present paper some time-dependent deformations of the proposed ice dome are obtained for the
unloaded and snow-loaded situations.

1. INTRODUCTION
It has been proposed that ice domes would make suitable shelters in arctic regions{1]. They
would be constructed by spraying water onto a cable-reinforced, inflated membrane. After the
water solidifies, the membrane is to be removed for reuse, and the cables remain to reinforce
the ice.

In the north, the use of ice domes can provide several advantages over more conventional
construction. First, for the resource and exploration outfits, unheated or partially heated
shelters, which provide temperatures of —5°C with no wind, are adequate for equipment
storage and repair shops. Second, the cost of transporting material to remote regions is very
expensive. For the construction of ice domes, only relatively lightweight things such as the
membrane, anchors, bolts and reinforcing cables need be flown in. Third, since the proposed
domes are to be large enough to enclose several dormitory trailers and work areas, the
inhabitants need not go outside between activities. Fourth, considerable savings in the con-
sumption of fuel, which is very costly in remote regions, are likely. Vehicles can be sheltered
and need not be kept running from autumn till spring. Also, less fuel would be required to
maintain higher temperatures in the office and dormitory areas.

Small-scale testing of ice domes[1,2], and studies of the time-dependent deformation of
ice[3-7], show that ice shells require a more general analysis than that provided by linear
elasticity. In its full generality, the deformation and stability analyses should consider visco-
elastic behaviour, material and kinematic nonlinearities, the effects of the apertures, reinforc-
ing, temperature, snow and wind loadings.

In this article, the dome is modelled as a linear Maxwell viscoelastic solid subject to self
and snow loadings.

In Section 2 the theory and results for a dome deforming under its own weight are given.
The effect of additional loading by snow is added in Section 3. The conclusions are drawn in
Section 4.

2. UNLOADED ICE DOME

In the present work the ice dome is considered to be initially a section of a sphere without
apertures. The envisaged ice domes are to be thin-shelled structures, 15 cm or so thick, with a
projected surface radius r of up to 25m (Fig. 1). Assuming that the ice takes on a poly-
crystalline state, it is assumed to be homogeneous and isotropic.

As discussed by Fliigge{8], when a shell carries its load essentially by normal and shearing
forces, then the moments may be neglected. The resulting simplified membrane theory allows
the computation of forces and stresses based only upon the equations of statics. The primary
loadings on ice domes are its own weight and the weight of the accumulated snow.

For a spherical dome under axisymmetric loading (Fig. 1), Fliigge derives the stress
resultants N, and N, to be
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Fig. 1. Ice dome.

where a is the radius of the sphere, p is the shell’s weight per unit area of the middle suiface,
and

ps=psiné; p,=-—pcosé. 3)

For a uniform shell, p is a constant, and one obtains

No =1 cos 0 @
Nd,=pa[m—cos 0]. (&)}

For a shell thickness 7, p = pgr where p is the mass density and g is the gravitational constant.
If the stresses are approximated by dividing the stress resultants by 7, then these become

1
76 = —pga[1+cos 0] ©)

m-cos 0]. N

Note that for a self-loaded membrane the stresses are independent of thickness. For a surface
radius r = g sin 6, =25 m, 8, = 45°, p = 917 kg/m® and g = 9.81 m/sec?, the stresses are illustrated
in Fig. 2.

The difficulty in treating ice in general is that it is a nonlinear viscoelastic solid. While it
seems certain{4, 5] that this nonlinearity is high for high stresses, there appears to be little
agreement for low stresses[5-7]. Variations in sample preparation and difficulties with keeping
experimental conditions constant are most likely the causes of the disagreements. The data
given by Stanley[3], Bromer and Kingery[7], and some of the results of Jellinek and- Brill{4]
indicate that if one is not particularly interested in the strain shortly after loading, then the
deformation of ice can be separated into an elastic part and a subsequent viscous fluid flow.
Such behaviour is typical of Maxwell solids. For instance, from [7}, it may be shown that the
strain rate € is

€= y(o)o 1t

where the material modulus y(Pa™' s™") at —13.0°C is

Y(o)=29x% 103 g%%8% )
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Fig. 2. Stresses in an unloaded spherical dome as a function of angle.

with & in Pascals. Although this still represents a nonlinear rate of strain, ¥'s dependence on o
is very small and will be neglected. It is not difficult to show from [9] that for viscous flow

€ = YO, — TO (10)
€4 = YO, — TO, (1
where = is a material modulus. In the present article it is assumed that y is a constant, given by
the worst case, i.e. the highest stress anywhere in the shell. Since no data appear to be available

for =, which plays the same role here as does v/ E, Poisson’s ratio divided by Young’s modulus,
in elasticity theory, it is assumed that

T =y, {12

Integrating (10) and (11) with respect to time gives
€ = (yos — o)t + & (13)
€= (Yo, — mop)t + & (14

where ¢ is time and €, and e, are the elastic strains. From geometric consideration Fliigge
obtains [8]

1fav
€6=- [55-*- W} 15
e¢=%[v cot 8+ w] (16)

where v and w are the tangential and perpendicular displacements (Fig. 1). Solving the
differential equations which result from the combination of (13)~(16), following [8] one obtains

8
v =sin O{L [(y+17)(00~a¢)t+e,—€2]§£-0-d0+ C}. a7

From Hooke’s law

Ee = 04— vo, (18)

Ee; = 0y = voy (19)
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eqn (17) becomes

. e{ . 2\ 4o, ..
v = sin J;(mt ")(°080“1+cos9)§n—9+ } (20)
where
m=C e =L (1) 1
=—(y+m =5 v). )

Integration of (20) gives

o . sin 6 1 ¢
v=Csin 6 +(mt+ n)sin o[ln (tan 0/2) 17 cos 0]%. (22)

From (6), (7), (14), (16) and (19) one gets

2
_pa‘[tE(y+m+1+v ]_
Er [———————-—1 T cos (tyE+1)cos8|—vcoto. (23)
In membrane theory only one displacement boundary condition may be satisfied. Here, it is
required that there be no vertical motion at @ = ;. At the boundary

v=C_C Siﬂ 90 (24)
2
_pa [tE(y+m+1+v ]‘
WTIE [ 1+ cos 6, (tyE + 1) cos 8o | ~ C cos 6. (25)
Demanding that w cos 6 = v sin 8, produces
[ mt+n E_‘lf ]
C= [1 +cos by 1E (tyE + 1) cos 6, | cos 6o. (26)

Equations (22), (23) and (26) were evaluated numerically for a number of cases. Equations (22)
and (23) are well-behaved at 8 = 0. However, for 8 at, or near 0, the computer cannot handle
the 0/0 and 0 - « that occur in (22) and (23). It is straightforward to obtain analytic expressions
for (22) and (23) for ¢ approaching zero. These were used wherever appropriate in the
numerical computation.

For the value of p, 7 and g given earlier, p is 1349 N/m’. From [3] and [10], E and v were
taken to be 7.0 GPa and 0.4, respectively. Using the largest stress in Fig. 2, |- 186| kPa, y and 7
were computed using (9) and (12) to be 0.77x 107 Pa™" 5™ and 0.31 x 107 Pa™’ s™". Figure 3
presents the deformations at ¢ = 107 s (115.6 days). The elastic components of the displacements
are of the order of millimetres.

3. DOME LOADED BY SNOW
Given the vagaries of the settlement of snow under various temperature and wind con-
ditions, it is difficult to determine accurately the effect of a snow load on the dome. It appears
reasonable to assume that snow accumulation on a surface approaches zero as the angle of
repose of that surface tends to the vertical. The weight per unit surface area of the dome and
snow is taken to be

pe=1{p+scosf)sinb 27
p.=—(p + s cos #) cos § (28)

where s is the weight of snow per unit area accumulating on a horizontal surface. Substituting
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Fig. 3. Deformations after 10’ sec. in an unloaded, initially spherical dome as a function of angle.

(27) and (28) into (1) produces

P8 _S
No= l+cos8 2° (29
From (4) one also gets
1 as
N¢~pa[1+cosa—cos 9]—7cos 20. (30)

Following the same procedure as in Section 2, the following integral form for v is obtained.

v=Csin8+(mt+n)sin8r cos 8 — 2 )__51}1
1+cos6/sin@
_ ( V) .
——sm 0 ('y + )t +—=—}|sin 6 d6. 31

The constants are as defined earlier, except for C which must be reevaluated. Integration of
(31) produces

= sin 8{C+(mt+n)[ln( sin & ) 1 + 6]0} 32
v= tan 9/2) 1+cosé pcos o) )

And, after some algebra, w is obtained as

Et(y+m)+1+v

w:gf[ T+ cos ~(tyE+1)cos 8] vcot0+ [Et(n- ¥ €08 26) + v — cos 26].

(33

Demanding that there be no vertical motion at 6 = 6, determines the constant C. Hence,
applying w cos 6 = v sin 6, gives

mt+n
C =cos 80[m (t'yE + 1) cos 00] 2aE cos Gl Et{(m — v cos 28y) + v — cos 26,].

(34)
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The previously utilized computer programme was modified according to the present formulae.
The stresses obtained are shown in Fig. 4. For illustrative purposes, it was assumed that
s = 1500 N/m?, which is slightly more than the weight of a 15cm thick shell. The other
parameters were unchanged. From the value of the largest stress, |—363| kPa, y and 7 were
computed to be 0.817x 107 Pa™' s! and 0.327x 107" Pa™' s™', respectively. Then, the
deformations after 10" s (115.6 days) were calculated, giving the values shown in Fig. 5. Again,
the elastic components of the displacements are only of the order of millimetres.

4. CONCLUSIONS

The domes that have been discussed in this article have a central height of 7.3 m. The sags at
the centre after 10’ s were 0.63 and 1.54 m, respectively, for the unloaded and snow-loaded
situations. These values represent 8.6 and 21.0% reductions in the ceiling heights. For the
unloaded dome, the thickness does not affect the stresses or deformations. Of course, for
domes subject to external loads such as snow or wind, greater thicknesses provide better creep
resistance. This may be seen by observing that the second terms in (29) and (30) become less
significant as 7 and hence p increase.

The easiest method of improving the creep characteristics of ice domes is to use smaller
dimensions. An unloaded dome with r=15m and 6,=45° develops a maximum stress of
— 111 kPa. The sag at the centre is 0.217 m with an initial ceiling height of 4.39 m. This is a
relatively smaller deformation (5%), than that obtained for the larger dome.
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Fig. 4. Stresses in a snow-loaded dome as a function of angle.
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Fig. 5. Deformations after 107 sec. in a snow-loaded, initially spherical dome as a function of angle.
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The results indicate that although large-scale ice domes appear to be feasible for winter
shelter, the creep deformations are by no means insignificant. The creep is neither so great as to
cause insurmountable difficulties, nor so small as to be ignorable. The approximations made in
this paper are divided between conservative and optimistic. The benefits of cable-reinforcing
were neglected and the material modulus y was assumed to be at the upper bound of its range
over the shell. On the other hand, the destabilizing effect of wind, which is very significant in
the north, was omitted. Possible stress concentrations near apertures were neglected. There is
evidence [3], however, that cable-reinforcing is most effective in these locations, so this
omission may not be too serious. Perhaps most importantly, temperature variations were
neglected. At higher temperatures, —5°C or greater, the creep rates of ice increase
considerably[3-5].

It is planned in future work to relax some of the more severe assumptions of the present
theory.
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